Supervisors from Institute of Fundamental Technological Research

loader-icon

 bblach@ippt.pan.pl

@ http://www.ippt.pan.pl/en/staff/bblach

Bartłomiej Błachowski is a research staff member at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN). His research work has primarily been in the areas of structural dynamics applications, smart structures, computational mechanics, Human-Structure Interaction and Structural Health Monitoring. He has published more than 20 technical papers/reports, including two book chapters. He has been the project leader or Principal Investigator for 5 research projects funded by Poland’s National Science Centre. His most recent research on structural health monitoring systems and wireless sensor applications integrates advanced computing tools and measurement techniques to detect damages in steel frames with bolted connections. His research experience includes international collaboration with scientists from the United States, China and Greece. He was also a member of the PAS Committee on Mechanics (2016-2020). Since 2016 he has served as a topical editor in mechanical engineering for the Bulletin of the Polish Academy of Sciences: Technical Sciences (http://journals.pan.pl/bpasts); its  JCR Impact Factor in 2019 is 1.385.

Research interests:

Structural dynamics, structural health monitoring, vibration control, topology optimization.

Major publications:

Błachowski B., Świercz A., Ostrowski M., Tauzowski P., Olaszek P., Jankowski Ł. (2020). “Convex relaxation for efficient sensor layout optimization in large‐scale structures subjected to moving loads”, Computer-Aided Civil and Infrastructure Engineering, DOI: 10.1111/mice.12553, pp.1-16.

Błachowski B., Tauzowski P., Lógó J. (2020). “Yield limited optimal topology design of elastoplastic structures”, Structural and Multidisciplinary Optimization, DOI: 10.1007/s00158-019-02447-9, pp.1-24.

An Y., Chatzi E., Sim S., Laflamme S., Błachowski B., Ou J. (2019). “Recent progress and future trends on damage identification methods for bridge structures”, Structural Control and Health Monitoring, DOI: 10.1002/stc.2416, Vol.26, No.10, pp.e2416-1-30.

Błachowski B., An Y., Spencer Jr. B.F., Ou J. (2017). “Axial strain accelerations approach for damage localization in statically determinate truss structures”, Computer-Aided Civil and Infrastructure Engineering, DOI: 10.1111/mice.12258, Vol.32, No.4, pp.304-318.

Pnevmatikos N.G., Błachowski B., Hatzigeorgiou G.D., Świercz A. (2016). “Wavelet analysis based damage localization in steel frames with bolted connections”, Smart Structures and Systems, DOI: 10.12989/sss.2016.18.6.1189, Vol.18, No.6, pp.1189-1202.

 

Patents:

 

An Y., Błachowski B., Ou J. High-damage-sensitivity truss structure damage real-time monitoring system. CN, Dalian University of Technology, Patent number 201610141896.4, Date of grant 2018-04-24.

tburczynski@ippt.pan.pl

@ http://www.ippt.pan.pl/en/staff/tburczynski

Tadeusz Burczyński is a professor and director of the Intitute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN). He earned his PhD and DSc (habilitation) degree from Silesian University of Technology in Gliwice. Since 1993 he has been a full professor. He headed the Institute of Computational Mechanics and Engineering, Silesian University of Technology and the Institute of Computer Science, Kraków University of Technology. He holds a number of prestigious national and international positions, such as chair of the PAS Committee on Mechanics, head of the Section of Computational Sciences of the PAS Committee on Informatics, a member of the General Council of the International Association for Computational Mechanics (IACM) and chair of the Committee for Computational Solids and Structural Mechanics of the European Community on Computational Methods in Applied Sciences (ECCOMAS). He has served as an expert for the European Research Council (ERC) and has been a member of ERC Panel PE8 “Products and Process Engineering” since 2008. He has also served as an expert for the French National Research Agency (ANR) in Labex Jury (2010) and the Spanish Government Program Severo Ochoa (2012). He has been a visiting professor at Politecnico di Milano (Italy), Clarkson University (USA), Delaware University (USA), Erlangen-Nurnberg University (Germany), Braunschweig University (Germany) and Minnesota University (USA).

Research interests:

Computational science and engineering, computer and information science, computational intelligence, computational mechanics and materials science (especially multiscale modelling and optimization of materials, intelligent nano-level design).

Major publications:

Burczyński T., Kuś W., Beluch W., Długosz A., Poteralski A., Szczepanik M. (2020).  Intelligent Computing in Optimal Design, Springer.

Maździarz M., Mrozek A., Kuś W., Burczyński T. (1996). “Anisotropic-Cyclicgraphene: A New Two-Dimensional Semiconducting Carbon Allotrope”, Materials, DOI: 10.3390/ma11030432, Vol.11, No.3, 432, 2018.

Maździarz M., Mrozek A., Kuś W., Burczyński T. (2017).  “First-principles study of new X-graphene and Y-graphene polymorphs generated by the two-stage strategy, Materials Chemistry and Physics, DOI: 10.1016/j.matchemphys.2017.08.066, Vol.202, 7-14.

Mrozek A., Kuś W., Burczyński T. (2017). “Method for determining structures of new carbon-based 2D materials with predefined mechanical properties”, International Journal for Multiscale Computational Engineering, DOI: 10.1615/IntJMultCompEng.2017020429, Vol.15, No.5, 379-394.

Mrozek A., Kuś W., Burczyński T. (2015). “Nano level optimization of graphene allotropes by means of a hybrid parallel evolutionary algorithm”, Computational Materials Science, DOI: 10.1016/j.commatsci.2015.05.002, Vol.106, 161-169.

Marszałek A., Burczyński T. (2014). “Modeling and forecasting financial time series with ordered fuzzy candlesticks”, Information Sciences, DOI: 10.1016/j.ins.2014.03.026, Vol.273, 144-155.

 bgambin@pan.pl

@ www.ippt.pan.pl/staff/bgambin

Barbara Gambin is an associate professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), where since 2009 she has headed the Biomechanical Laboratory. She studied mathematics at the University of Warsaw before earning her PhD (1978) from IFTR PAS, specializing in mathematical methods in mechanics. She spent a 1-year postdoctoral fellowship at the University of Stuttgart and half a year at the Max-Plank Institute for Solid State Research. She has supervised two finished and three in-progress doctoral (PhD) theses. She is the author and co-author of over 150 scientific papers published in scientific journals, and in conference proceedings published in English, 3 monographs in Polish, and co-editor of two books, including one published by Springer. She chas ooperated with Dresden and Stuttgart University (1975-1987) on the theory of composites, with Bulgarian Academy of Sciences (2008-2015) on fracture mechanics, with the Center of Theoretical Physics, CNRS, Marseille (2005-2008) on continued fractions applications, with Abo University in Finland (2007-2011) on systems biology, and with Belarussian State University in Minsk (2008-present) in the field of applied mathematics.

Research interests:

Theory of continua, composites, coupled fields, ultrasound in medicine and biology, magnetic nanoparticle-mediated hyperthermia.

Major publications:

 Gambin B., et al. (2019). “Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles”, Medical Physics.

Nowicki A., Trawiński Z., Gambin B., et al. (2018). “Ultrasound for measurements of flow-mediated dilation and shear rate in the radial artery”, Ultrasound in Medicine and Biology.

Nowicki A., Gambin B., et al. (2016). ”Ultrasonic Measurement of Temperature Rise in Breast Cyst and in Neighbouring Tissues as a Method of Tissue Differentiation”, Arch. Acoustics.

Gambin B., Kruglenko E. (2015). “Temperature Measurement by Statistical Parameters of Ultrasound Signal Backscattered from Tissue Samples”, Acta Physica Polonica.

Ponte-Castaneda P., Telega J.,  Gambin B. (Eds), (2006). Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials, Kluwer Academic Publisher.

Gambin B.,  Kröner E., Higher‐order terms in the homogenized stress‐strain relation of periodic elastic media, Physica Status Solidi (1989).

 tlipnia@ippt.pan.pl

@ http://pmbm.ippt.pan.pl

Tomasz Lipniacki is a full professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), where he leads the Laboratory of Modelling in Biology and Medicine and the Department of Biosystems and Soft Matter. For about 4 years he was a visiting researcher at Rice University and Los Alamos National Laboratories (both in the US). His background is in theoretical physics – with PhD and DSc (habilitation) degrees in quantum turbulence – but his current research area is systems biology. His group combines population and single-cell experiments with mathematical modeling involving ordinary and partial differential equations, bifurcation analysis and stochastic processes. The main research focus is on innate immune responses, virology and cancer, and in a broader perspective in heterogeneous responses to stress. He has led about ten grants financed by Poland’s National Science Center, National Science Foundation (Team project) and Vienna Science and Technology Fund (as the Polish PI). Currently, he is a PI of the GRIEG project (financed by the Norwegian Financial Mechanism) and two OPUS grants (financed by Poland’s National Science Center). He is the author of 72 publications cited 1850 times, with H index of 22 (Scopus).

Research interests (keywords):

Systems biology, immune responses, mathematical modeling, stochastic processes, single cell    techniques.

Selected publications:

Czerkies M., Korwek Z., Prus W., Kochańczyk M., Jaruszewicz-Błońska J., Tudelska K., Błoński S., Kimmel M., Brasier A.R., Lipniacki T. (2018). “Cell fate in antiviral response arises in the crosstalk of IRF, NF-κB and JAK/STAT pathways”, Nature Communications 9:493.

Kochańczyk M., Kocieniewski P., Kozłowska E., Jaruszewicz-Błońska J., Sparta B., Pargett M., Albeck J.G., Hlavacek W.S., Lipniacki T. (2017). “Relaxation oscillations and hierarchy of feedbacks in MAPK signaling”, Scientific Reports 7:38244.

Hat B., Kochańczyk M., Bogdał M.N., Lipniacki T. (2016). “Feedbacks, bifurcations, and cell fate decision-making in the p53 system”, PLoS Computational Biology 12(2):e1004787.

Barua D., Hlavacek W.S., Lipniacki T. (2012). “A computational model for early events in B cell antigen receptor signaling: analysis of the roles of Lyn and Fyn, Journal of Immunology 189(2):646-658.

Tay S., Hughey J., Lee T., Lipniacki T., Covert M. (2010). “Quake S. Single-cell NF-κB dynamics reveal digital activation and analogue information processing”, Nature 466:267-271.

 epostek@ippt.pan.pl

@ http://www.ippt.pan.pl/staff/epostek

Eligiusz Postek is currently an assistant professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN). He earned his doctorate at IFTR PAS in 1996, and his DSc (habilitation) in mechanics, dealing with coupled problems, at the same Institute in 2014. In addition to IPPT PAN, he has worked at the Institute of Building Technology, Warsaw University of Technology, Catalonia University of Technology, Technical University in Lulea in Sweden, the University of Wales in Swansea (UK), University of Leeds (UK), and University of Sheffield (UK). He is a co-author of 19 publications in journals on the Web of Science database, 38 reviewed conference articles and 44 conference abstracts. He lectures at the Warsaw University of Technology and the Doctoral School at IFTR PAS. He was also a co-supervisor of doctoral dissertations at the Technical University in Lulea and the University of Wales in Swansea. He has experience in cooperating with industrial partners both in Poland and abroad. He has worked on such projects as analysing a high-rise antenna mast, failure pressure of a nuclear reactor safety building, and several others. Currently, his interests focus on the numerical description of materials under dynamic loads with a complex internal structure, as well as their structure evolving in time.

Research interests:

Computational mechanics, coupled problems, composites, cell mechanics, HPC computing.

Major publications:

Postek E., Sadowski T. (2020). “Thermomechanical effects during impact testing of WC/Co composite material”, Composite Structures, DOI: 10.1016/j.compstruct.2020.112054, Vol.241, pp.112054-1-25.

Postek E., Pęcherski R.B., Nowak Z. (2019). “Peridynamic simulation of crushing processes in copper open-cell foam”, Archives of Metallurgy and Materials, DOI: 10.24425/amm.2019.130133, Vol.64, No.4, pp.1603-1610.

Postek E., Lewis R.W., Gethin D.T. (2008). “Finite element modelling of the squeeze casting process”, International Journal of Numerical Methods for Heat and Fluid Flow, DOI: 10.1108/09615530810853619, Vol.18, pp.325-355.

Postek E. (2014). “Parameter sensitivity of a monolayer tensegrity model of tissues”, Journal of Coupled Systems and Multiscale Dynamics, DOI: 10.1166/jcsmd.2014.1054, Vol.2, No.4, pp.179-187.

Kleiber M., Hien Tran-D., Postek E. (1994). “Incremental finite element sensitivity analysis for nonlinear applications”, International Journal for Numerical Methods in Engineering, DOI: 10.1002/nme.1620371906, Vol.37, pp.3291-3308.

 epiecz@ippt.pan.pl

@ www.ippt.pan.pl/staff/epiecz

Elzbieta A. Pieczyska is an associate professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN). She earned her MSc from the Warsaw University of Technology, Faculty of Mechatronics, then defended her PhD investigating the thermoelastic effect in steel due to hardening (presented as a keynote lecture during the 11th ICEM 1998 Oxford and 5th AITA 1999 Venice). In 2004-2006 she held a postdoctoral fellowship  from the Japan Society for Promotion of Sciences JSPS at the Aichi Institute of Technology AIT, Toyota-City, Japan. She maintains active research collaboration with many research centers in Japan on the investigation of the properties of new materials, e.g. joint papers, workshops, obtaining unique materials, an invited professor position at Fukuoka University in 2019, etc. She completed her habilitation thesis on the “Investigation of thermomechanical properties of TiNi shape memory alloys and polyurethane shape memory polymer”, earning her DSc (habilitation) in 2010. The main results were presented as a plenary invited lecture during the 11th AITA 2007 Florence and 14th Int. Conference on Experimental Mechanics ICEM, Poitiers, France, 2010. She co-chaired the 19th ICEM 2021, Kraków, Poland. She has promoted 3 PhD students: Vladimir Dunic, University of Kragujevac, Serbia, 2016; Maria Staszczak, IFTR PAS, 2019 and Karol Golasiński, IFTR PAS, 2020.

Research interests:

Experimental mechanics and thermomechanics of multifunctional materials - shape memory alloys, shape memory polymers and innovative Ti β alloy - Gum Metal.

Major publications:

Golasiński K.M., Pieczyska E.A., Maj M., Staszczak M., Świec P., Furuta T., Kuramoto S. (2020). “Investigation of strain rate sensitivity of gum metal under tension using digital image correlation”, Archives of Civil and Mechanical Engineering, DOI: 10.1007/s43452-020-00055-9, Vol.20, No.2, pp.53-1-14.

Pieczyska E.A., Maj M., Golasiński K.M., Staszczak M., Furuta T., Kuramoto S. (2018). “Thermomechanical Studies of Yielding and Strain Localization Phenomena of Gum Metal under Tension”, Materials, DOI: 10.3390/ma11040567, Vol.11, No.567, pp.1-13.

Tobushi H., Matsui R., Takeda K., Pieczyska E.A. (2013). Mechanical Properties of Shape Memory Materials, Nova Science Publishers, Inc., 400 Oser Avenue, Suite 1600, Hauppauge, N.Y. 11788-3619, USA, pp.1-271.

Pieczyska E.A., Gadaj S.P., Nowacki W.K., Tobushi H. (2006). Phase-transformation fronts evolution for strain- and stress-controlled tension tests in TiNi Shape Memory Alloy”, Experimental Mechanics, Vol.46, pp.531-542.

Pieczyska E.A. (1999). “Thermoelastic effect in austenitic steel referred to its hardening”, Journal of Theoretical and Applied Mechanics, Vol.37, No.2, pp.349-367.

 psajk@ippt.pan.pl

@ https://www.ippt.pan.pl/tmstruktura/zaklady/sppib.html?start=0

@ http://polybiolab.ippt.pan.pl/

Pawel Sajkiewicz is an experienced scientist in the field of materials science and biomedical engineering, with particular emphasis on polymer materials for applications in tissue engineering and regenerative medicine. He is the initiator and head of the Independent Laboratory of Polymers and Biomaterials at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN) – an expert in the field of synthetic and natural polymers, their structure and properties, with an emphasis on electrospun nanofibers, from both a fundamental and applied perspective. He earned his master’s degree from the Faculty of Materials Science at Warsaw Technical University, his PhD at IFRT PAS. He was a postdoctoral research associate at the University of Tennessee, Materials Science and Engineering Department. He is the author or co-author of over 60 scientific papers and 3 patents. He has lectured at universities and institutes in Italy, Japan, the United States, and Poland. He has been the Principal Investigator and main contractor for numerous scientific projects, both domestic and foreign as well as the coordinator at IFTR PAS of the CePT project (Center for Preclinical Research and Technology), as part of the Innovative Economy Operational Program, 2009-2015. He has received numerous accolades for his scientific and professional achievements, including awards from the President the Polish Academy of Sciences and the Director of IFTR PAS.

Research interests:

Biopolymers, structure, scaffolds, nanofibers, tissue engineering.

Major publications from the last two years:

Szewczyk P.K., Gradys A., Kyun Kim S., Persano L., Marzec M., Kryshtal A., Busolo T., Toncelli A., Pisignano D., Bernasik A., Kar-Narayan S., Sajkiewicz P., Stachewicz U. (2020). “Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting”, Acs Applied Materials and Interfaces, Vol.12, No.11, pp.13575-13583.

von Tiedemann P., Maciol K., Preis J., Sajkiewicz P., Frey H. (2019). “Rapid One-Pot Synthesis of Tapered Star Copolymers via Ultra-Fast Coupling of Polystyryllithium Chain Ends”, Polymer Chemistry, pp.1-7.

Enayati M.S., Neisiany R.E., Sajkiewicz P., Behzad T., Denis P., Pierini F. (2019). “Effect of nanofiller incorporation on thermomechanical and toughness of poly (vinyl alcohol)-based electrospun nanofibrous bionanocomposites”, Theoretical and Applied Fracture Mechanics, Vol.99, pp.44-50.

Jeznach O., Kołbuk D., Sajkiewicz P. (2019). “Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films, Polymers, Vol.11, No.1669, pp.1-16.

Niemczyk-Soczyńska B., Gradys A., Kołbuk D., Krzton-Maziopa A., Sajkiewicz P. (2019). “Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering”, Polymers, Vol.11, No.1772, pp.1-17.

 jszczepa@ippt.pan.pl

@ http://bluebox.ippt.pan.pl/~jszczepa/

Janusz Szczepanski is a professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), a member of its Scientific Council and its deputy director for research. He earned his MSc. (1979) in mathematics (functional analysis) from the University of Warsaw, PhD (1985) in applied mathematics and his DSc (habilitation) degree with distinction (2007) in computer sciences from the Polish Academy of Sciences. In 2014, he received the title of full professor from the President of the Republic of Poland. In 2001-2004, he was a consultant in cryptography with the Certification Authority “Centrast” Co. for Public Key Infrastructure in Poland. He was a visiting scientist at the Miguel Hernandez University, Elche, Spain in 2000 and 2003 and at the University of California, San Diego, in 2004. He received the special Polish Academy of Sciences Award (Huber) in 1989.

He has published papers in such journals as Information Sciences; Proceedings of the American Society; Nonlinear Analysis: Theory, Methods & Applications; Physical Review Letters; IEEE Transactions; Annalen der Physik; Biological Cybernetics; International Journal of Neural Systems; Brain Research; BMC Neuroscience; Neurocomputing; and Computer Methods and Programs in Biomedicine.

Research interests:

Information theory, neuroinformatics, and the application of dynamical systems and stochastic processes to biological systems and cryptography.

 

Major publications:

Pregowska A., Kaplan E., Szczepanski J. (2019). “How far can neural correlations reduce uncertainty? Comparison of Information Transmission Rates for Markov and Bernoulli processes”, International Journal of Neural Systems, Vol. 29, No. 8, 1950003.

Pregowska A., Proniewska K., van Dam P., Szczepanski J. (2019).  “Using Lempel-Ziv complexity as effective classification tool of the sleep-related breathing disorders”, Computer Methods and Programs in Biomedicine, DOI:  10.1016/j.cmpb.2019.105052, Vol.182, pp.105052-1-7.

Pregowska A., Szczepanski J., Wajnryb E. (2016). “Temporal code versus rate code for binary Information Sources”, Neurocomputing, DOI: 10.1016/j.neucom.2016.08.034, Vol.216, pp.756-762.

Szczepanski J. (2009). “On the distribution function of the complexity of finite sequences”, Information Sciences, 179 (9): 1217-1220.

Amigo J. M., Szczepanski J., Wajnryb E., Sanchez-Vives M. V. (2004). “Estimating the Entropy Rate of Spike Trains via Lempel-Ziv Complexity”, Neural Computation, Vol. 16, I. 4, pp. 717 – 736.

Kocarev L., Szczepanski J. (2004). “Finite-space Lyapunov exponents and pseudo-chaos”, Physical Review Letters, 93, 234101.

Szczepanski J. (2001). “A New Result on the Nirenberg Problem for Expanding Maps, Nonlinear Analysis: Theory Methods & Applications, 43, 91-99.

 yurijtas@ippt.pan.pl

@ http://www.ippt.pan.pl/staff/yurijtas

Jurij Tasinkiewicz is an assistant professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN –  2004-2007 at the Department of Dynamics of Complex Systems; 2007-2013 at the Department of Physical Acoustics; since 2013 at the Department of Ultrasounds). He earned his PhD in information science from the Institute, followed by his DSc (habilitation) degree in the discipline of electronics in 2014.

Research interests:

Acoustic wave generation and scattering by planar structures used in beam-forming applications; synthetic aperture methods in ultrasonography; 3D-4D ultrasound imaging methods.

Major publications:

 

Trots I.,  Tasinkevych Y.,  Litniewski J. (2020). “Estimating the ultrasound attenuation coefficient using complementary Golay codes”, Ultrasonics, vol.102, pp.106056-1-9.

 Tasinkevych Y., Falińska K., Lewin P. A.,  Litniewski J. (2019). “Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone: phantom and in-vitro study, Ultrasonics, vol.94, pp.382-390.

Trots I.,  Tasinkevych Y., Nowicki A. (2015). “Orthogonal Golay Codes With Local Beam Pattern Correction in Ultrasonic Imaging”, IEEE Signal Process. Lett., vol.22, No.10, pp.1681-1684.

 Tasinkevych Y.,  Klimonda Z.,  Lewandowski M.,  Nowicki A., Lewin P. A. (2013). “Modified multi-element synthetic transmit aperture method for ultrasound imaging: A tissue phantom study”, Ultrasonics, vol. 53, pp. 570—579.

Tasinkevych Y.,  Trots I.,  Nowicki A.,  Lewin P. A. (2012). “Modified synthetic transmit aperture algorithm for ultrasound imaging, Ultrasonics, vol. 52, pp. 333—342.

 jwojcik@ippt.pan.pl

@ http://bluebox.ippt.pan.pl/~jwojcik/

Janusz Wójcik is an associate professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), where he leads the Ultrasound Introscopy Laboratory. He studied physics at the Technical University of Warsaw, specializing in Fourier optics. His doctoral dissertation (1990) concerned nonlinear envelope waves in Vlasov-Maxwell plasma (Langmuir solitons, nonlinear nonlocal Schrödinger equation). He earned his DSc (habilitation) degree in the field of mechanics in 2000 on the basis of work in the field of phenomena occurring in non-linear propagation of acoustic fields. In 2002, he was a visiting researcher at Drexel University in Philadelphia, USA. He is the author of several dozen works in the field of linear and nonlinear acoustics and numerical modeling in this area (in particular applied to biological media). Recently, his research has focused on the phenomena of scattering, acoustical driving force and streaming in suspensions. From 2017 he is a section editor, and since 2018 deputy editor-in-chief of the quarterly Archives of Acoustics.

Research interests:

Nonlinear acoustics, scattering, acoustical streaming.

Major publications:

Wojcik J., Lewandowski M., Żołek N. (2017). “Grating Lobes Suppression by Adding Virtual Receiving Subaperture in Synthetic Aperture Imaging”, Ultrasonics, vol.76, pp.125-135, http://dx.doi.org/10.1016/j.ultras.2016.12.

Wojcik J., Gambin B. (2017). “Theoretical and numerical aspects of nonlinear reflection-transmission phenomena in acoustics”, Applied Mathematical Modeling (Else), Vol.42, pp.100-113. DOI: 10.1016/j.apm.2016.10.026.

Wojcik J., Litniewski J., Nowicki A. (2011). “Modeling and analysis of multiple scattering of acoustic waves in complex media: Application to the trabecular bone”, J. Acoust. Soc. Am., 130 (4), pp.1908-1918. DOI: 10.1121/1.3625285.

Wójcik J., Nowicki A., Lewin P.A., Bloomfield P.E., Kujawska T., Filipczyński L. (2006). “Wave envelopes method for description of nonlinear acoustic wave propagation”, Ultrasonics, Vol.44., No.3(July), pp.310-339. DOI: 10.1016/j.ultras.2006.04.001.

Wójcik J. (1998). “Conservation of energy and absorption in acoustic fields for linear and nonlinear propagation, Journal of Acoustical Society of America 104 (5), pp.2654-2663, https://doi.org/10.1121/1.423849.

 mkraj@ippt.pan.pl

@ http://www.ippt.pan.pl/staff/mkraj

Marcin Krajewski works as an assistant professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN). He earned MSc degrees in Chemistry and Materials Engineering from the Warsaw University of Technology (Poland), Université de Picardie Jules Verne, Université Toulouse III Paul Sabatier, Aix-Marseille Université (France), and Universidad de Córdoba (Spain). In 2016, he received his Ph.D. degree in Physical Sciences from the Faculty of Physics, University of Warsaw (Poland). Marcin Krajewski has been a scholarship holder of the Foundation for Polish Science (FNP), the Centre National de la Recherche Scientifique (CNRS), the ALISTORE European Research Institute, and the Polish Ministry of Science and Higher Education (MNiSW). Moreover, he is engaged in cooperation with many research groups in Poland as well as abroad (Taiwan, China, United States, United Kingdom). His research interests include the synthesis, characterization and modification of nanomaterials for biomedical, energy- and environmentally-related applications.

Research interests:

Electrochemistry; nanotechnology; materials for energy storage and conversion; magnetic materials; solid state physics and chemistry.

Major publications:

Krajewski M.,  Liou S.C.,  Chiou W.A.,  Tokarczyk M.,  Małolepszy A.,  Płocińska M.,  Witecka A.,  Lewińska S., Ślawska-Waniewska A. (2020). Cryst. Growth Des. 20, 3208‒3216, DOI: 10.1021/acs.cgd.0c00070.

Krajewski M.,  Liao P.Y.,  Michalska M.,  Tokarczyk M.,  Lin J.Y.  (2019). J. Energy Storage 26, 101020, DOI: 10.1016/j.est.2019.101020.

Krajewski M. (2017). Nanoscale 9, 16511‒16545, DOI: 10.1039/c7nr05823c.

Krajewski M., Lee P.H., Wu S.H., Brzózka K., Małolepszy A., Stobiński L., Tokarczyk M., Kowalski G., Wasik D. (2017).  Electrochim. Acta 228, 82‒90, DOI: 10.1016/j.electacta.2017.01.051.

Krajewski M., Brzózka K., Lin W.S., Lin H.M., Tokarczyk M., Borysiuk J., Kowalski G., Wasik D. (2016). Phys. Chem. Chem. Phys. 18, 3900‒3909, DOI: 10.1039/c5cp07569f.

 fpierini@ippt.pan.pl

@ http://www.ippt.pan.pl/en/staff/fpierini

Filippo Pierini received his M. Sc. in Advanced Chemical Methodologies with the highest marks and honours (110/110 summa cum laude) from the University of Bologna (Italy) in 2009 and his Ph.D. in Chemical Sciences at the University of Bologna in 2013. He performed his doctoral and postdoctoral work in the Laboratory of Environmental and Biological Structural Chemistry where he focused on understanding the relationship between the hierarchical structures and properties of electrospun nanofibers. After a postdoc at the Institute of Fundamental Technological Research, Polish Academy of Science (IPPT PAN) he started his own research group (Pierini Research Group;


Research interests
:

Materials engineering, Electrospinning, Nanomaterials,


Major publications
:

De Sio L., Ding B., Focsan M., Kogermann K., Pascoal-Faria P., Petronella F., Mitchell G., Zussman E., Pierini F., Personalized reusable face masks with smart nano‐assisted destruction of pathogens for COVID‐19: a visionary road, Chemistry - A European Journal (2021), ISSN: 0947-6539, DOI: 10.1002/chem.202004875;

Lanzi M., Pierini F., Efficient and thermally stable BHJ solar cells based on a soluble hydroxy-functionalized regioregular polydodecylthiophene, REACTIVE AND FUNCTIONAL POLYMERS (2021), ISSN: 1381-5148, DOI: 10.1016/j.reactfunctpolym.2020.104803;

Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., De Sio L., Urbanek O., Zembrzycki K., Pruchniewski M., Lanzi M., Salatelli E., Calogero A., Kowalewski T.A., Yarin A.L., Pierini F., Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-Infrared light-driven biomedical applications, ACS Applied Materials and Interfaces (2020), ISSN: 1944-8244, DOI: 10.1021/acsami.0c13266;

Pierini F., Guglielmelli A., Urbanek O., Nakielski P., Pezzi L., Buda R., Lanzi M., Kowalewski T.A., De Sio L., Thermoplasmonic‐activated hydrogel based dynamic light attenuator, Advanced Optical Materials (2020), ISSN: 2195-1071, DOI: 10.1002/adom.202000324;

Wang L., Lv H., Liu L., Zhang Q., Nakielski P., Si Y., Cao J., Li X., Pierini F., Yu J., Ding B., Electrospun nanofiber-reinforced three-dimensional chitosan matrices: architectural, mechanical and biological properties, JOURNAL OF COLLOID AND INTERFACE SCIENCE, ISSN: 0021-9797 (2020), DOI: 10.1016/j.jcis.2020.01.016

 zkowalew@ippt.pan.pl

@ http://www.ippt.pan.pl/en/staff/zkowalew

Professor Zbigniew L. Kowalewski graduated from Faculty of Mechanics, Warsaw University of Technology (1981). He received the Ph.D. and habilitation at the Institute of Fundamental Technological Research of the Polish Academy of Sciences (IPPT PAN) in 1988 and 1997, respectively. In 2008 Professor Zbigniew Kowalewski was nominated by president of Poland as a full Professor in Mechanical Engineering. He was the British Council Fellow from 1992 to 1993 at the University of Manchester. Professor Zbigniew Kowalewski has been appointed at IPPT PAN since 1985, and also at the Warsaw University of Technology from 1997 to 2010. Since 2011 he has been a Head of the Department of Experimental Mechanics at IPPT PAN. From 2015 to 2019 he was the president of the Polish Society of Theoretical and Applied Mechanics. From 2016 he is vice-president of the European Society of Experimental Mechanics (EuraSEM). He is a member of Committee of Mechanics of the Polish Academy of Sciences. In January 2019 he was elected as the Chairman of Scientific Council of IPPT PAN. His more than 35 years’ research work experience is mainly devoted to: plasticity, creep, fatigue, experimental methods in solid mechanics, modelling of creep constitutive equations. He is an author or co-author of more than 410 papers published in well known international journals and conference proceedings, 15 books, and 9 patents.


Research interests:

experimental methods in solid mechanics, modelling of creep constitutive equations, plasticity, creep, fatigue.


Major publications:

Kopeć M., Kukla D., Brodecki A., Kowalewski Z.L., Effect of high temperature exposure on the fatigue damage development of X10CrMoVNb9-1 steel for power plant pipes, International Journal of Pressure Vessels and Piping, ISSN: 0308-0161, DOI: 10.1016/j.ijpvp.2020.104282, Vol.189, pp.104282-1-16, 2021
Kopeć M., Jóźwiak S., Kowalewski Z.L., A novel microstructural evolution model for growth of ultra-fine Al2O3 oxides from SiO2 silica ceramic decomposition during self-propagated high-temperature synthesis, Materials, ISSN: 1996-1944,DOI: 10.3390/ma13122821, Vol.13, No.12, pp.2821-1-11, 2020
Szymczak T., Makowska K., Kowalewski Z.L., Characteristics and fracture of the S700MC high strength steel under various types of loading, Materials, ISSN: 1996-1944, DOI: 10.3390/ma13225249, Vol.13, No.22, pp.5249-1-17, 2020
Ustrzycka A., Mróz Z., Kowalewski Z.L., Kucharski S., Analysis of fatigue crack initiation in cyclic microplasticity regime, International Journal of Fatigue, ISSN: 0142-1123, DOI: 10.1016/j.ijfatigue.2019.105342, Vol.131, pp.105342-1-15, 2020
Makowska K., Brodecki A., Mackiewicz S., Kowalewski Z.L., Damage development of Inconel 718 due to laboratory simulated creep, Journal of Theoretical and Applied Mechanics, 56 No.3, 2018, 893-896
Piotrowski L., Chmielewski M., Kowalewski Z.L., The dominant influence of plastic deformation induced residua stress on the Barkhausen effect signal in martensitic steels, Journal of Nondestructive Evaluation, 36 , 2017, pp. 1-8
Makowska K., Piotrowski L., Kowalewski Z.L., Prediction of the mechanical properties of P91 steel by
means of magneto-acoustic emission and acoustic birefringence, Journal of Nondestructive Evaluation,
vol. 36, Issue 2, June 2017, pp. 43/1 – 43/10
Moćko W., Grzywna P., Kowalewski Z.L., Radziejewska J., An influence of cyclic loading on the form of
constitutive relationship for DP500 steel, Materials and Design, ISSN: 0261-3069, DOI:
10.1016/j.matdes.2016.04.075, Vol.103, pp.183-193, 2016
Kowalewski Z.L., Szymczak T., Maciejewski J., Material effect during monotonic-cyclic loading,
International Journal of Solids and Structures, vol. 51, 740-753, 2014
Dietrich L., Socha G., Kowalewski Z.L., Anti-buckling fixture for large deformation tension-compression
cyclic loading of thin metal sheets, Strain International Journal of Experimental Mechanics, vol. 50, 174-
183, 2014.